

Tetrahedron Letters 43 (2002) 8379-8381

## A new photochemical synthesis of benzoxazolo[3,2-*b*]isoquinolin-11-one and isoquinolino[3,2-*b*][1,3]benzoxazin-11-one

Annamalai Senthilvelan and Vayalakkavoor T. Ramakrishnan\*

Department of Organic Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai 600 025, India Received 29 June 2002; revised 30 August 2002; accepted 9 September 2002

Abstract—Photocyclization of substituted tetrahydroisoquinoline-1,3-diones, under base-mediated conditions, afforded benzoxazolo[3,2-*b*]isoquinolin-11-ones and an isoquinolino[3,2-*b*]benzoxazin-11-one. © 2002 Elsevier Science Ltd. All rights reserved.

Tetrahydroisoquinolines constitute a class of compounds attracting increasing interest due to their biological activities. They are important key intermediates for the synthesis of isoquinoline alkaloids.<sup>1,2</sup> Isoquinoline fused heterocyclic compounds are also highly important showing significant biological activity.<sup>3</sup>

A few methods have been reported for the synthesis of oxazoloisoquinoline analogues.<sup>4,5</sup> Xu et al,<sup>6</sup> reported the synthesis of benzoxazolo[3,2-*b*]isoquinolin-11-ones and isoquinolino[2,3-*a*][3,1]benzoxazine-5,12-dione from homophthalic anhydride. Recently, photocyclization of N-(2-halophenyl)-pyridine carboxamides to 2-pyridyl benzoxazoles has been reported.<sup>7</sup>

In continuation of our interest in the photochemical synthesis of benzothiazoles,<sup>8,9</sup> we have recently

reported<sup>10</sup> the photocyclization of triazole-3-thiones to triazolo[3,4-*b*]-1,3-(4*H*)-benzothiazines, under basic conditions. To the best of our knowledge there is no report on the photochemical synthesis of isoquinoline-fused benzoxazole and benzoxazine systems. We report here our preliminary results on the photocyclization of substituted tetrahydroisoquinoline-1,3-diones to benzoxazolo[3,2-*b*]isoquinolin-11-ones and an isoquinolino[3,2-*b*][1,3]benzoxazin-11-one, under basic conditions.

The required starting materials, tetrahydroisoquinoline-1,3-diones **1a**-**h**, were prepared by using the recently emerging solvent free microwave technique. Microwave irradiation of homophthalic acid and substituted anilines/benzylamine in acidic silica gel afforded the isoquinoline-1,3-diones **1a**-**h** in good yields (Scheme 1).



## Scheme 1.

Keywords: photocyclization; basic conditions; photohydrolysis.

<sup>\*</sup> Corresponding author. Tel.: 91-44-2351269, ext. 214; fax: 91-44-2352494; e-mail: vtrk28@yahoo.com

<sup>0040-4039/02/\$ -</sup> see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)01955-X

The structures of compounds **1a**–**h** were confirmed by spectral data. Further, the structure of compounds **1b**, **1f** and **1h** were confirmed by single-crystal X-ray diffraction.<sup>11</sup>

Irradiation of the quinoline **1a** under aqueous basic conditions (CH<sub>3</sub>CN/1 M NaOH, two-phase) in a multilamp reactor (MLR) (254 nm) under nitrogen furnished the benzoxazolo[3,2-*b*]isoquinolin-11-one **2a** in good yield (Scheme 1). Similarly, photolysis of compounds **1b–f** also gave the corresponding benzoxazolo[3,2*b*]isoquinolin-11-ones **2b–f** as the sole products (Table 1). Irradiation of the bromo analogue **1g** also afforded the oxazole **2a**. A model reaction of **1a** under dark conditions gave no product; starting material **1a** was isolated.

The photosubstitution reaction described here involves intramolecular replacement of the halogen atom present in the *N*-phenyl moiety of the isoquinoline-1,3-diones 1a-g by the carbonyl oxygen (C<sub>3</sub>-CO) under the basic conditions.

Next, the irradiation of the *N*-benzyl derivative **1h** was carried out using  $CH_3CN/1$  M NaOH in a MLR under nitrogen to afford the *N*-(2-chlorobenzyl)-2-methyl benzamide **3** involving hydrolysis followed by decarboxylation (Scheme 2), instead of the expected isoquino-linobenzoxazine **4**. Whereas, irradiation of **1h** using the  $CH_3CN/3$  M NaOH (two-phase) conditions afforded the expected isoquino[3,2-*b*][1,3]benzoxazin-11-one **4** (Table 1) as the only product.

The formation of product **3** is probably due to ineffective deprotonation of the benzyl derivative **1h** in 1 M NaOH. Obviously, an increase in the concentration of base (3 M NaOH) facilitates the deprotonation considerably, which leads to intramolecular substitution of the *o*-chlorine of the *N*-benzyl isoquinoline **1h**.

The structures of the photoproducts 2a-f, 3 and 4 were consistent with the spectral data.<sup>12</sup> Furthermore, the structure of the compound  $2c^{13}$  was confirmed by single-crystal X-ray diffraction.

In conclusion, it has been observed that irradiation of tetrahydroisoquinolines 1a-g under base-mediated conditions afforded the respective benzoxazolo isoquinolines. Photolysis of isoquinoline 1h gave the decarboxylated or cyclized product depending on the concentration of the base employed.

A mechanistic study and experimental details will be published elsewhere.

## Acknowledgements

We wish to thank the UGC, New Delhi, for the Special Assistance Programme to the Department of Organic Chemistry and CSIR-New Delhi for providing the research fellowship (A.S.V.).

| 1 | Х  | $\mathbb{R}^1$ | $\mathbb{R}^2$  | $\mathbb{R}^3$ | $\mathbb{R}^4$ | n | Irradiation time (h) | Product | Product yield (%) | Mp (°C)                           |
|---|----|----------------|-----------------|----------------|----------------|---|----------------------|---------|-------------------|-----------------------------------|
| a | Cl | Н              | Н               | Н              | Н              | 0 | 12                   | 2a      | 41                | 200-202<br>(204-206) <sup>6</sup> |
| b | Cl | Cl             | Н               | Н              | Н              | 0 | 7                    | 2b      | 43                | 188–190                           |
| c | Cl | Н              | Cl              | Н              | Н              | 0 | 8                    | 2c      | 48                | 205-207                           |
| d | Cl | Н              | Н               | Cl             | Н              | 0 | 9                    | 2d      | 46                | 213–215<br>(211–212) <sup>6</sup> |
| e | Cl | Н              | Н               | Н              | C1             | 0 | 10                   | 2e      | 40                | 183-185                           |
| f | Br | Н              | CH <sub>3</sub> | Н              | Н              | 0 | 7                    | 2f      | 52                | 200-202                           |
| g | Br | Н              | Н               | Н              | Н              | 0 | 8                    | 2a      | 50                | 198-200                           |
| h | Cl | Н              | Н               | Н              | Н              | 1 | 12                   | 4       | 47                | 210-212                           |

Table 1. Photolysis of tetrahydroisoquinolines 1a-h



Scheme 2.

## References

- Iida, H.; Katoh, N.; Narimiya, M.; Kikuchi, T. *Heterocy*cles 1977, 6, 2017.
- Kametani, T.; Enomoto, Y.; Takahashi, K.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1979, 2836.
- Rao, A. K.; Gadre, J. N.; Pednekar, S. Indian J. Chem. 1997, 36, 410.
- Yamato, M.; Hashigaki; Ishikawa, S.; Qais, N. Tetrahedron Lett. 1988, 29, 6949.
- Spengler, J.; Schedel, H.; Sieler, J.; Quaedflieg, P. J. L. M.; Broxterman, Q. B.; Duchateau, A. L. L.; Bruger, K. Synthesis 2001, 10, 1513.
- Ling, Q. K.; Chen, X. Y.; Fun, H. K.; Huang, X. Y.; Xu, J. H. J. Chem. Soc., Perkin Trans. 1 1998, 4147.
- Park, Y. T.; Jung, C. H.; Kim, K. W.; Kim, S. H. J. Org. Chem. 1999, 64, 8546.
- Jayanthi, G.; Muthusamy, S.; Ramakrishnan, V. T. J. Photochem. Photobiol. A: Chem. 1998, 116, 103.
- Jayanthi, G.; Muthusamy, S.; Paramasivam, R.; Ramakrishnan, V. T.; Ramasamy, N. K.; Ramamurthy, P. J. Org. Chem. 1997, 62, 5766.
- Senthilvelan, A.; Ramakrishnan, V. T. *Tetrahedron Lett.* 2002, 43, 5119.
- Subbiah Pandi, A.; Rajakannan, V.; Velmurugan, D.; Parvez, M.; Kim, M. J.; Senthilvelan, A.; Narasinga Rao, S. *Acta Crystallogr.* 2002, *C58*, o164.
- 12. Spectral data of compound 3: Yield: 69%; mp: 100-102°C; UV: 210 nm (CH<sub>3</sub>OH); IR (KBr): 3296, 3060, 1641, 1535 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ 2.41 (s, 3H, CH<sub>3</sub>), 4.68 (d, 2H, J=6 Hz, CH<sub>2</sub>), 6.25 (bs, 1H, NH), 7.20-7.44 (m, 8H, ArH); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz): δ 19.71 (CH<sub>3</sub>), 41.80 (CH<sub>2</sub>), 125.64, 126.67, 127.08, 128.99, 129.52, 129.90, 130.27, 130.97, 133.61, 135.52, 135.98, 136.16, 169.80; MS, m/z (%): (259 (M<sup>+</sup>), 261-trace), 224 (100), 125 (10), 119 (56), 91 (53), 77 (12). Analysis: C<sub>15</sub>H<sub>14</sub>NOCl (259.73): calcd C, 69.36; H, 5.43; N, 5.39. Found: C, 69.00; H, 5.07; N, 5.65. Spectral data of compound 4: UV: 232 nm (CH<sub>3</sub>OH); IR (KBr): 1689, 1647, 1601, 1460 cm^-1; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ 5.16 (s, 2H, CH<sub>2</sub>), 6.21 (s, 1H, C<sub>6</sub>-CH), 7.12-7.60 (m, 7H, ArH), 8.33 (d, J=7.8 Hz, 1H, ArH); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz): δ 40.67 (CH<sub>2</sub>), 87.79 (C<sub>6</sub>-CH), 115.87, 118.39, 122.11, 124.23, 124.75, 125.25, 126.81, 127.95, 129.17, 132.82, 137.59, 147.20, 151.50, 161.88; MS, m/z (%): 249 (M<sup>+</sup>, 100), 248 (28), 220 (15), 193 (6), 165 (10), 143 (98), 115 (73), 114 (5), 106 (12), 89 (18). Analysis: C<sub>16</sub>H<sub>11</sub>NO<sub>2</sub> (249.26): calcd C, 77.09; H, 4.44; N: 5.61. Found: C, 77.37; H, 4.68; N, 5.83.
- Ravishankar, T.; Chinnakali, K.; Senthilvelan, A.; Fun, H. K.; Ramakrishnan, V. T.; Chantrapromma, S.; Abdulrazak, I.; Usman, A. *Acta Crystallogr.* 2001, *E57*, o1209.